Minimal degree univariate piecewise polynomials with prescribed Sobolev regularity

نویسندگان

  • Amal Al-Rashdan
  • Michael J. Johnson
چکیده

For k ∈ {1, 2, 3, . . . }, we construct an even compactly supported piecewise polynomial ψk whose Fourier transform satisfies Ak(1 + ω ) ≤ b ψk(ω) ≤ Bk(1 + ω ), ω ∈ R, for some constants Bk ≥ Ak > 0. The degree of ψk is shown to be minimal, and is strictly less than that of Wendland’s function φ1,k−1 when k > 2. This shows that, for k > 2, Wendland’s piecewise polynomial φ1,k−1 is not of minimal degree if one places no restrictions on the number of pieces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactly Supported, Piecewise Polyharmonic Radial Functions with Prescribed Regularity

A compactly supported radially symmetric function Φ : R → R is said to have Sobolev regularity k if there exist constants B ≥ A > 0 such that the Fourier transform of Φ satisfies A(1 + ‖ω‖) ≤ b Φ(ω) ≤ B(1 + ‖ω‖), ω ∈ R. Such functions are useful in radial basis function methods because the resulting native space will correspond to the Sobolev space W k 2 (R). For even dimensions d and integers ...

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

On 3-monotone approximation by piecewise polynomials

Abstract. We consider 3-monotone approximation by piecewise polynomials with prescribed knots. A general theorem is proved, which reduces the problem of 3-monotone uniform approximation of a 3-monotone function, to convex local L1 approximation of the derivative of the function. As the corollary we obtain Jackson-type estimates on the degree of 3-monotone approximation by piecewise polynomials ...

متن کامل

Cubature over the sphere S in Sobolev spaces of arbitrary order

This paper studies numerical integration (or cubature) over the unit sphere S2 ⊂ R3 for functions in arbitrary Sobolev spaces Hs(S2), s > 1. We discuss sequences (Qm(n))n∈N of cubature rules, where (i) the rule Qm(n) uses m(n) points and is assumed to integrate exactly all (spherical) polynomials of degree ≤ n, and (ii) the sequence (Qm(n)) satisfies a certain local regularity property. This lo...

متن کامل

Analysis of Periodic Schrödinger Operators: Regularity and Approximation of Eigenvalues

Let V be a real valued potential that is smooth everywhere on R3, except at a periodic, discrete set of points, where it has singularities of the Coulomb form Z/r. We assume that the potential V is periodic with period lattice L. We study the spectrum of the Schrödinger operator H = −∆ + V acting on the space of Bloch waves with arbitrary, but fixed, wavevector k. Let T := R3/L. Let u be an eig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 164  شماره 

صفحات  -

تاریخ انتشار 2012